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Abstract—As a newly invented type of rateless codes, Spinal
codes can be capacity-achieving with short message length and
thus hold great prospects for the design of Ultra-Reliable Low-
Latency Communication (URLLC) systems. However, the error
probability of Spinal codes over Binary Symmetric Channel
(BSC) in the finite-length regime lacks explicit analysis in the
literature, which in turn hinders efforts to the analytical design
of high-efficiency associated techniques, such as the puncturing
strategy. In this paper, with the bound on the number of
erroneous bits in the Maximum Likelihood (ML) decoding result,
we derive the asymptotically tight bound on the Bit Error Rate
(BER) of Spinal codes over BSC. Based on this result, we then
design the optimal puncturing strategy for Spinal codes over BSC
by formulating a rate maximization problem under the constraint
of low error probability. In addition, we carry out extensive
simulations to verify the correctness of the error probability
analysis and the effectiveness of the puncturing strategy design.

Index Terms—Spinal codes, BSC, error probability analysis,
puncturing.

I. INTRODUCTION

As a newly invented type of rateless codes [1], Spinal codes
can be capacity-achieving over both BSC and Additive White
Gaussian Noise (AWGN) channel with short message length,
which enables it to hold potentially enormous prospects for
the emerging URLLC applications, including the information
exchanging among self-driving cars, the user-specific 3D video
rendering and augmented reality as well as the wireless
automation of production facilities, etc.

Since its invention, Spinal codes have drawn extensive
research interests due to its capacity-achieving property with
short message length. Amount of efforts have been made
for Spinal codes on its way from theory to practice. In [2],
the proposed forward stack decoding (FSD) can decrease
the decoding complexity remarkably without sacrificing the
rate performance. In [3], the proposed sliding window de-
coding outperforms FSD in terms of much lower decod-
ing complexity, while the rate performance remains almost
the same. There are also lots of works on the design of
Spinal codes-based protocols or architectures for mobile and
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wireless networking applications. In [4], the authors propose
an efficiency-maximizing protocol, named RateMore, based
on Spinal codes, Strider codes [5] and Raptor codes [6]. It
is proved that RateMore provides a practically useful link-
layer protocol in wireless networks, prominently improving
the performance under the condition of time-varying channel.
Moreover, in [7], the proposed cross-layer image transmission
scheme significantly improves the performance of transmission
efficiency with the help of Spinal codes serving as the error
protector in the physical layer. In [8], the authors present a
practical protocol incorporating Spinal codes, named HOPE.
Experimental evaluation demonstrates that HOPE takes an
advantage of network throughput over existing approaches.

The above works have made remarkable contributions on
decreasing the decoding complexity and broadening the po-
tentials of Spinal codes to future wireless communications.
However, the analysis of the error probability of Spinal codes
as a finite-length error control coding technique is still to be
improved, especially for BSC, which is typically used as the
channel model for digital transmissions. In [9], the authors
put forward a method to analyze the BER over BSC by de-
randomizing Shannon’s random code book construction. The
key idea is the application of the variant of Gallager’s famous
result in [10], which is unconventional since Spinal codes is
not a type of traditional random code. In [11], the authors
propose the average error probability upper bound on finite-
length unequal error protection (UEP) Spinal codes AWGN
channel and BSC, while the result is based on the average
error probability applied for all kinds of random codes.

Analysis of the error probability of Spinal codes over BSC is
of enormous practical value, paving the way for the analytical
design of high-efficiency associated techniques, such as the
concatenated coding systems [12], the forward error correction
technique in the hybrid automatic repeat request (HARQ)
systems [4] and the puncturing strategy design. For the optimal
designs of these techniques, analysis of the error probability
is a primary need.

To sum up, the analysis of the BER of Spinal codes over
BSC in the finite-length regime is fundamental. However, it
lacks explicit analysis in the literature. The existing analysis
assumes Spinal codes as a general type of random code,
ignoring its error-correction capability. The special coding
structure and the rateless transmission mode of Spinal codes
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pose considerable difficulties on the analysis of the error
probability of Spinal codes.

In this paper, we analyze the error probability based on
the encoding structure and the decoding rule of Spinal codes
rather than neglecting its error-correction capability. Firstly,
we investigate the upper bound on the number of erroneous
bits in the ML decoding. Then, the asymptotic BER of Spinal
codes in the finite-length regime over BSC is derived. Based
on the theoretical analysis of the BER, we propose the opti-
mal puncturing strategy by formulating a rate maximization
problem.

The remainder of the paper is organized as follows. Section
II briefly introduces the basics of Spinal codes, including its
encoding process and decoding process. The analysis of the
error probability of Spinal codes over BSC is presented in
section III. In Section IV, the proposed optimal puncturing
strategy is presented, followed by simulation results in section
V. Eventually, the conclusions are drawn in section VI.

II. BASICS OF SPINAL CODES

A. The Encoding of Spinal Codes

Rateless Spinal codes introduce a hash function, h, as
the kernel of the encoding process to continuously generate
pseudo-random bits. As shown in Fig. 1, the integral encoding
process includes 4 steps:

1) an n-bit message M is divided into n/k k-bit segments,
denoted by mi, where i ∈ {1, 2, . . . , n/k}.

2) the encoder employs hash function to map the message
segment mi to a v-bit state si as

si = h(si−1,mi), s0 = 0v, (1)

where s0 serves as the initial state known by both the
encoder and the decoder.

3) the v-bit state si is used to seed a random number
generator (RNG) to generate a sequence of pseudo-
random c-bit symbols denoted by xi,j :

RNG :si ×N→xi,j , (2)

where xi,j ∈ {0,1}c, si ∈ {0,1}v .
4) The sender maps the c-bit symbols to a channel input

set to fit the channel characteristics: f : xi,j →Ω, where
f is a constellation mapping function, Ω is the channel
input set.

The processes above will continue unless the decoding
process succeeds and an acknowledgment (ACK) is sent to
end the transmission, which reflects the rateless property of
Spinal codes.

B. The Decoding of Spinal Codes

The optimal Spinal decoder is the maximum likelihood
(ML) decoding. In the ML decoding, the decoder reuses
the same hash function, initial spine value s0 and RNG to
completely reproduce the decoding tree. Then, the decoder
traverses all the possible nodes in the decoding tree to match
the maximum likely candidate sequence which is closest to

Fig. 1. The encoding process of Spinal codes

the received signals in Euclidean distance. The ML decoding
rule can be expressed by

M̂ = argmin
M ′∈(0,1)n

‖ȳ − x̄(M ′)‖2 , (3)

where ȳ is the vector of received symbols, x(M ′) represents an
encoding function consisted of the same hash function, initial
spine value s0 and RNG as encoder does.

That is, the estimated message M̂ ∈ {0, 1}n is the one that
generates a vector x(M̂) which is closest to ȳ in Euclidean
distance. However, traversing all the nodes in the entire decod-
ing tree brings about an exponential increase of complexity.
In [1], an ML decoder named bubble decoder is designed
for Spinal codes. The bubble decoder only reserves B best
matching nodes at each layer and selects the best matching
one at the last layer to decode the received message.

III. ANALYSIS OF THE ERROR PROBABILITY OF SPINAL
CODES OVER BSC

The error probability analysis of Spinal codes based on
the ML decoding rule over BSC can be divided into 2 steps.
Firstly, we put forward the analysis of the upper bound on the
number of Spinal codes’ erroneous bits. Secondly, by utilizing
the result obtained in the 1st step, the asymptotic BER analysis
of Spinal codes in the finite-length regime is elaborated.

A. Upper Bound on the Number of Erroneous Bits

In [1], J. Perry indicates that there exists an upper bound
on the path cost during the decoding process of Spinal
codes. To elaborate it, we assume αȳ as the vector of re-
ceived symbols, where α is the correction factor of linear
minimum mean square error (LMMSE). By introducing the
parameter α, the ML decoder can be approximated as a
LMMSE decoder [1]. The correction factor can be calculated
by α = P ∗/

(
P ∗ + σ2

)
, where P ∗ denotes the average power

of transmitted signal, σ2 denotes the variance of the noise.
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Theorem 1. For any 1 ≤ i ≤ L over AWGN channel, and any
ε > 0, we possess probability of 1−O

(
exp

(−Θ
(
ε2iL

)))
to

assure that
i∑

j=1

L∑
l=1

(αyj,l − xj,l(M))
2 ≤ (1 + ε)

iLP ∗

1 + SNR
. (4)

Proof. Consider a general transmission over AWGN channel
as yj,l = xj,l(M) +Nj,l, where Nj,l denotes the independent
Gaussian noise ∼ (

0, σ2
)
, we obtain

(αyj,l − xj,l(M))
2
=α2N2

j,l + (1− α)2xj,l(M)2

− 2α(1− α)nj,lxj,l(M).
(5)

Note that xj,l(M) and Nj,l are independent:

E
(
(αyj,l − xj,l(M))

2
)
= α2σ2 + (1− α)2P ∗

=
P ∗σ2

(P ∗ + σ2)
=

P ∗

1 + SNR

. (6)

Then, for small enough ε > 0, applying the Chernoff bound,
we can easily obtain (4).

Define Spinal codes with message length n, segment length
k and pass number L as (n, k, L) Spinal codes. For BSC with
crossover probability f , the corresponding Signal Noise Ratio
(SNR) is equivalent to

[
erfc−1 (2f)

]2
. Meanwhile, for BSC,

the Euclidean distance can be replaced by Hamming distance
such that

L∑
l=1

(αyj,l ⊕ xj,l(M)) =
L∑

l=1

(αyj,l − xj,l(M))
2

≤ (1 + ε)
LP ∗

1 +
[
erfc−1 (2f)

]2 .
(7)

Remark: For BSC, the constellation mapping is trivial: c =
1, which means that the one-bit symbol xj,l(M) is directly
transmitted to the channel without constellation mapping.

It turns out that the left hand side of (7) represents the num-
ber of erroneous bits for each encoded segment. Considering
that the number of erroneous bits must be an integer, we set
Q as

Q =

⌊
(1 + ε)

LP ∗

1 +
[
erfc−1 (2f)

]2
⌋
. (8)

to denote the maximum number of erroneous bits for one
segment of Spinal codes.

B. Asymptotic Performance Analysis of Spinal Codes over
BSC

We denote m as the transmitted sequence of one segment,
the probability of the error event E is

P (E) �
∑

m

P (E|m)P (m). (9)

Assume m to be equiprobable. Due to symmetry of the
random code, P (E) is equal to P (E|m) for any given m.

Let m̂ denote the estimated sequence of the received message
generated by the ML decoder, it turns out that

P (E|m) � P (m̂ �= m|m) (10)

Therefore, for the (n, k, L) Spinal code, the error probability
of each segment can be upper bounded as

P (E) = P (m̂ �= m|m) ≤
Q∑
i=1

(
L
i

)
f i(1− f)L−i. (11)

Considering that (11) is based on the idea of permutation
and combination, it somehow over-evaluates the upper bound
on error probability without considering the error-correction
capability of Spinal codes. According to Spinal codes’ prop-
erty, (11) can be modified by treating Spinal codes as a kind
of special linear error-correcting code.

We introduce Sw, the number of the sequences produced by
the spine value with hamming weight w, to modify (11). Let
d denote the minimum distance and tw = 	w/2
 represent
the lower bound on the number of erroneous bits for each
encoded segment [13]. Then for the (n, k, L) Spinal codes,
the asymptotic tight bound on the bit error probability is

Pe ≤
[

L∑
w=d

Sw

Q∑
i=tw

(
L
i

)
f i(1− f)L−i

]
/(nL/k) (12)

where {Sw}, w, and d are obtained by statistic data.

IV. OPTIMAL PUNCTURING DESIGN FOR SPINAL CODES
OVER BSC

During the transmission process of Spinal codes, generally a
whole pass is transmitted to ensure the decoding requirements.
However, there always exists redundant symbols in the pass,
which results in a loss of coding rate. The puncturing strategy
is introduced to reduce the number of symbols transmitted
through each pass and improve the transmission rate. In [1],
the authors propose the uniform puncturing design, however,
the design ignores the serial coding structure of Spinal codes,
which can be enhanced by the proposed optimal puncturing
design elaborated in this section.

A. The Optimization Problem Formulation

To establish the mathematical model, two fundamental
parameters are emphasized here, including coding rate and
Frame Error Rate (FER):

1)Coding Rate : The puncturing strategy separates the
entire pass into individual sub-passes to transmit the message.
Let li, i ∈ {1, 2, . . . , n/k} denote the number of passes trans-
mitted by the ith segment. The coding rate can be expressed
as

R = n/

n/k∑
i=1

li. (13)

2)Frame Error Rate : Eq.(12) proposes the bound on the
bit error probability, however, it should be modified a little to
adapt to the situation where L is not fixed.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on August 02,2024 at 00:32:00 UTC from IEEE Xplore.  Restrictions apply. 



From (8), the upper bound on the erroneous bits of the ith

segment is

Qi =

⌊
(1 + ε)

LiP
∗

1 +
[
erfc−1 (2f)

]2
⌋
, (14)

where Li =

{
n/k∑

m=n/k+1−i

lm, i = 1, 2, . . . , n/k

}
.

Similar to (12), the BER bound on the the ith segment is

Pei ≤
⎡
⎣ Li∑
wi=di

Sw

Qi∑
j=twi

(
Li

j

)
f j(1− f)Li−j

⎤
⎦ /Li, (15)

where wi is the hamming weight of the ith segment, di is the
minimum hamming distance of the ith segment, twi

= 	wi/2
.
Let Pef denote FER and Ei denote the event that there

exists an error in the ith segment. Then, it turns out that

Pef = P(E1 ∪ E2 ∪ . . . ∪ En/k)

= 1−
n/k∏
i=1

P(Ēi|Ē1 . . . Ēi−1)

≤ 1−
n/k∏
i=1

(1− Pei),

(16)

where Pei is upper bounded by (12)

Then, the mathematical model is established as below:

1) Constraint: To ensure reliable communication, the Spinal
decoding error probability should be smaller than a
preset threshold of URLLC system [14]:P upper

ef ≤ 10−5.
2) Variable: li, i ∈ {1, 2, . . . , n/k}, the number of passes

transmitted by the ith segment.
3) Objective function: The maximum code rate, denoted as

Rmax = n/

n/k∑
j=1

lj (17)

Summarize the above into mathematical expressions, we
obtain: {

l̂j

}
= argmaxR

{lj}

s.t.

⎧⎪⎨
⎪⎩
P upper
ef = 1−∏n/k

i=1(1− Pei) ≤ 10−5

0 < l1 ≤ l2 ≤ · · · ≤ ln/k

l1, l2, . . . , ln/k ∈ Z
+

This model is a typical nonlinear integer programming
(NLP) problem, which can be figured by optimization algo-
rithm tools. Some results are given in the next section.

B. Case Study

Take n = 32, k = 4 as an example, the value of li is
displayed in Tab. I.
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Fig. 2. The optimal puncturing strategy under p=0.01. In each pass, the sender
only transmits the symbols marked by dark circles and the symbols marked
by white circles will be punctured.

TABLE I
THE OPTIMAL PUNCTURING STRATEGY UNDER EACH p

p l1 l2 l3 l4 l5 l6 l7 l8
0.1 3 4 4 4 5 5 8 11

0.08 3 3 4 4 4 5 7 11
0.05 3 3 3 4 4 4 7 10
0.01 3 3 3 3 4 4 6 10
0.005 3 3 3 3 3 4 5 8
0.001 3 3 3 3 3 3 4 6

0.0001 3 3 3 3 3 3 4 4

In the decoding process of Spinal codes, the child node
is extended in the right way only when the parent node is
decoded correctly. In this way, we can conclude that the tail
symbols of Spinal codes are more likely to be erroneous. By
observing the puncturing patterns in Tab. I, we can find that
the proposed puncturing strategy tends to transmit more tail
symbols, which provides better protection of error-prone tail
symbols and reduces the transmission redundancy.

V. SIMULATION RESULTS

In this section, simulation results are given to verify the
accuracy of the asymptotic analysis and demonstrate the
superiority of the proposed optimal puncturing strategy.

For comparison, Fig. 3 shows the BER performance of
simulation results and asymptotic analysis. The simulation is
carried out under the parameter setting as L = 12, n = 32,
k = 4, B = 64. The gap between the simulation curve and
the upper bound on BER increases as the crossover probability
descends. This phenomenon can be explained as follows: as
the crossover probability decreases, the number of erroneous
bits upper bound Q gradually declines, posing difficulty on
carrying out accurate asymptotic analysis.

Fig. 4 shows the rate performance comparison among the
optimal puncturing strategy and the original uniform punc-
turing strategy as well as Spinal codes without puncturing
over BSC. The simulation results of the rate performance
are obtained in the mode of rateless transmission and the
transmission parameters are set as n = 32, k = 4, B = 64.
Obviously, the proposed puncturing strategy achieves better
rate performance than the uniform puncturing strategy.
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Fig. 3. The comparison of BER performance between simulation and the
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Fig. 4. The rate performance of the optimal puncturing strategy

In Fig. 5, the BER performance comparison between the
optimal puncturing strategy and the original Spinal codes
is presented, where the Spinal code is utilized as a fixed-
rate code. To follow the principle of single variable, the
transmission parameters are set as n = 32, k = 4, B = 64,
with the fixed rate set as R = k/L = 1/3 bit/symbol.
The simulation results illustrate that the optimal puncturing
strategy outperforms the original Spinal codes. The optimal
puncturing strategy’s advantage of BER performance can be
attributed to its tendency of tail-symbols transmitting. That is,
compared to the original Spinal codes under the premise of
the same rate, the proposed puncturing strategy sends more
symbols for the error-prone tail parts to ensure successful
decoding, which in turn reduces the bit error rate and leads to
a better BER performance.

VI. CONCLUSION

Analysis of the error probability of Spinal codes over BSC
is of fundamental importance. It serves as the theoretical basis
for the analytical design of Spinal codes-based high-efficiency
associated techniques in URLLC systems. With the upper
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Fig. 5. The BER performance of the optimal puncturing strategy and the
original Spinal codes.

bound on the number of erroneous bits in the ML decoding
result, we derive the BER upper bound of Spinal codes in
the finite-length regime over BSC. The simulation shows that
the error probability analysis well approximates the BER
performance of Spinal codes. Based on the theoretical analysis,
we also propose the optimal puncturing strategy for Spinal
codes, which outperforms the uniform puncturing strategy and
achieves higher rate in the simulation.
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